Edit C:\Program Files\Java\jdk1.8.0_121\com\sun\javafx\geom\Arc2D.java
/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package com.sun.javafx.geom; import com.sun.javafx.geom.transform.BaseTransform; /** * <a name="inscribes"> * The arc is a partial section of a full ellipse which * inscribes the framing rectangle of its parent {@link RectangularShape}. * </a> * <a name="angles"> * The angles are specified relative to the non-square * framing rectangle such that 45 degrees always falls on the line from * the center of the ellipse to the upper right corner of the framing * rectangle. * As a result, if the framing rectangle is noticeably longer along one * axis than the other, the angles to the start and end of the arc segment * will be skewed farther along the longer axis of the frame. * </a> * * @version 10 Feb 1997 */ public class Arc2D extends RectangularShape { /** * The closure type for an open arc with no path segments * connecting the two ends of the arc segment. */ public final static int OPEN = 0; /** * The closure type for an arc closed by drawing a straight * line segment from the start of the arc segment to the end of the * arc segment. */ public final static int CHORD = 1; /** * The closure type for an arc closed by drawing straight line * segments from the start of the arc segment to the center * of the full ellipse and from that point to the end of the arc segment. */ public final static int PIE = 2; private int type; /** * The X coordinate of the upper-left corner of the framing * rectangle of the arc. * @serial */ public float x; /** * The Y coordinate of the upper-left corner of the framing * rectangle of the arc. * @serial */ public float y; /** * The overall width of the full ellipse of which this arc is * a partial section (not considering the * angular extents). * @serial */ public float width; /** * The overall height of the full ellipse of which this arc is * a partial section (not considering the * angular extents). * @serial */ public float height; /** * The starting angle of the arc in degrees. * @serial */ public float start; /** * The angular extent of the arc in degrees. * @serial */ public float extent; /** * Constructs a new OPEN arc, initialized to location (0, 0), * size (0, 0), angular extents (start = 0, extent = 0). */ public Arc2D() { this(OPEN); } /** * Constructs a new arc, initialized to location (0, 0), * size (0, 0), angular extents (start = 0, extent = 0), and * the specified closure type. * * @param type The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */ public Arc2D(int type) { setArcType(type); } /** * Constructs a new arc, initialized to the specified location, * size, angular extents, and closure type. * * @param x The X coordinate of the upper-left corner of * the arc's framing rectangle. * @param y The Y coordinate of the upper-left corner of * the arc's framing rectangle. * @param w The overall width of the full ellipse of which * this arc is a partial section. * @param h The overall height of the full ellipse of which this * arc is a partial section. * @param start The starting angle of the arc in degrees. * @param extent The angular extent of the arc in degrees. * @param type The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */ public Arc2D(float x, float y, float w, float h, float start, float extent, int type) { this(type); this.x = x; this.y = y; this.width = w; this.height = h; this.start = start; this.extent = extent; } /** * {@inheritDoc} */ @Override public float getX() { return x; } /** * {@inheritDoc} */ @Override public float getY() { return y; } /** * {@inheritDoc} */ @Override public float getWidth() { return width; } /** * {@inheritDoc} */ @Override public float getHeight() { return height; } /** * {@inheritDoc} */ public boolean isEmpty() { return (width <= 0f || height <= 0f); } /** * {@inheritDoc} */ public void setArc(float x, float y, float w, float h, float angSt, float angExt, int closure) { this.setArcType(closure); this.x = x; this.y = y; this.width = w; this.height = h; this.start = angSt; this.extent = angExt; } /** * Returns the arc closure type of the arc: {@link #OPEN}, * {@link #CHORD}, or {@link #PIE}. * @return One of the integer constant closure types defined * in this class. * @see #setArcType */ public int getArcType() { return type; } /** * Returns the starting point of the arc. This point is the * intersection of the ray from the center defined by the * starting angle and the elliptical boundary of the arc. * * @return A <CODE>Point2D</CODE> object representing the * x,y coordinates of the starting point of the arc. */ public Point2D getStartPoint() { double angle = Math.toRadians(-start); double x = this.x + (Math.cos(angle) * 0.5 + 0.5) * width; double y = this.y + (Math.sin(angle) * 0.5 + 0.5) * height; return new Point2D((float)x, (float)y); } /** * Returns the ending point of the arc. This point is the * intersection of the ray from the center defined by the * starting angle plus the angular extent of the arc and the * elliptical boundary of the arc. * * @return A <CODE>Point2D</CODE> object representing the * x,y coordinates of the ending point of the arc. */ public Point2D getEndPoint() { double angle = Math.toRadians(-start - extent); double x = this.x + (Math.cos(angle) * 0.5 + 0.5) * width; double y = this.y + (Math.sin(angle) * 0.5 + 0.5) * height; return new Point2D((float)x, (float)y); } /** * Sets the location, size, angular extents, and closure type of * this arc to the specified values. * * @param loc The <CODE>Point2D</CODE> representing the coordinates of * the upper-left corner of the arc. * @param size The <CODE>Dimension2D</CODE> representing the width * and height of the full ellipse of which this arc is * a partial section. * @param angSt The starting angle of the arc in degrees. * @param angExt The angular extent of the arc in degrees. * @param closure The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */ public void setArc(Point2D loc, Dimension2D size, float angSt, float angExt, int closure) { setArc(loc.x, loc.y, size.width, size.height, angSt, angExt, closure); } /** * Sets this arc to be the same as the specified arc. * * @param a The <CODE>Arc2D</CODE> to use to set the arc's values. */ public void setArc(Arc2D a) { setArc(a.x, a.y, a.width, a.height, a.start, a.extent, a.type); } /** * Sets the position, bounds, angular extents, and closure type of * this arc to the specified values. The arc is defined by a center * point and a radius rather than a framing rectangle for the full ellipse. * * @param x The X coordinate of the center of the arc. * @param y The Y coordinate of the center of the arc. * @param radius The radius of the arc. * @param angSt The starting angle of the arc in degrees. * @param angExt The angular extent of the arc in degrees. * @param closure The closure type for the arc: * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. */ public void setArcByCenter(float x, float y, float radius, float angSt, float angExt, int closure) { setArc(x - radius, y - radius, radius * 2f, radius * 2f, angSt, angExt, closure); } /** * Sets the position, bounds, and angular extents of this arc to the * specified value. The starting angle of the arc is tangent to the * line specified by points (p1, p2), the ending angle is tangent to * the line specified by points (p2, p3), and the arc has the * specified radius. * * @param p1 The first point that defines the arc. The starting * angle of the arc is tangent to the line specified by points (p1, p2). * @param p2 The second point that defines the arc. The starting * angle of the arc is tangent to the line specified by points (p1, p2). * The ending angle of the arc is tangent to the line specified by * points (p2, p3). * @param p3 The third point that defines the arc. The ending angle * of the arc is tangent to the line specified by points (p2, p3). * @param radius The radius of the arc. */ public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, float radius) { double ang1 = Math.atan2(p1.y - p2.y, p1.x - p2.x); double ang2 = Math.atan2(p3.y - p2.y, p3.x - p2.x); double diff = ang2 - ang1; if (diff > Math.PI) { ang2 -= Math.PI * 2.0; } else if (diff < -Math.PI) { ang2 += Math.PI * 2.0; } double bisect = (ang1 + ang2) / 2.0; double theta = Math.abs(ang2 - bisect); double dist = radius / Math.sin(theta); double x = p2.x + dist * Math.cos(bisect); double y = p2.y + dist * Math.sin(bisect); // REMIND: This needs some work... if (ang1 < ang2) { ang1 -= Math.PI / 2.0; ang2 += Math.PI / 2.0; } else { ang1 += Math.PI / 2.0; ang2 -= Math.PI / 2.0; } ang1 = Math.toDegrees(-ang1); ang2 = Math.toDegrees(-ang2); diff = ang2 - ang1; if (diff < 0) { diff += 360; } else { diff -= 360; } setArcByCenter((float)x, (float)y, (float)radius, (float)ang1, (float)diff, type); } /** * Sets the starting angle of this arc to the angle that the * specified point defines relative to the center of this arc. * The angular extent of the arc will remain the same. * * @param p The <CODE>Point2D</CODE> that defines the starting angle. * @see #start */ public void setAngleStart(Point2D p) { // Bias the dx and dy by the height and width of the oval. double dx = this.height * (p.x - getCenterX()); double dy = this.width * (p.y - getCenterY()); start = (float)-Math.toDegrees(Math.atan2(dy, dx)); } /** * Sets the starting angle and angular extent of this arc using two * sets of coordinates. The first set of coordinates is used to * determine the angle of the starting point relative to the arc's * center. The second set of coordinates is used to determine the * angle of the end point relative to the arc's center. * The arc will always be non-empty and extend counterclockwise * from the first point around to the second point. * * @param x1 The X coordinate of the arc's starting point. * @param y1 The Y coordinate of the arc's starting point. * @param x2 The X coordinate of the arc's ending point. * @param y2 The Y coordinate of the arc's ending point. */ public void setAngles(float x1, float y1, float x2, float y2) { double x = getCenterX(); double y = getCenterY(); double w = this.width; double h = this.height;; // Note: reversing the Y equations negates the angle to adjust // for the upside down coordinate system. // Also we should bias atans by the height and width of the oval. double ang1 = Math.atan2(w * (y - y1), h * (x1 - x)); double ang2 = Math.atan2(w * (y - y2), h * (x2 - x)); ang2 -= ang1; if (ang2 <= 0.0) { ang2 += Math.PI * 2.0; } start = (float)Math.toDegrees(ang1); extent = (float)Math.toDegrees(ang2); } /** * Sets the starting angle and angular extent of this arc using * two points. The first point is used to determine the angle of * the starting point relative to the arc's center. * The second point is used to determine the angle of the end point * relative to the arc's center. * The arc will always be non-empty and extend counterclockwise * from the first point around to the second point. * * @param p1 The <CODE>Point2D</CODE> that defines the arc's * starting point. * @param p2 The <CODE>Point2D</CODE> that defines the arc's * ending point. */ public void setAngles(Point2D p1, Point2D p2) { setAngles(p1.x, p1.y, p2.x, p2.y); } /** * Sets the closure type of this arc to the specified value: * <CODE>OPEN</CODE>, <CODE>CHORD</CODE>, or <CODE>PIE</CODE>. * * @param type The integer constant that represents the closure * type of this arc: {@link #OPEN}, {@link #CHORD}, or * {@link #PIE}. * * @throws IllegalArgumentException if <code>type</code> is not * 0, 1, or 2.+ * @see #getArcType */ public void setArcType(int type) { if (type < OPEN || type > PIE) { throw new IllegalArgumentException("invalid type for Arc: "+type); } this.type = type; } /** * {@inheritDoc} * Note that the arc * <a href="Arc2D.html#inscribes">partially inscribes</a> * the framing rectangle of this {@code RectangularShape}. */ public void setFrame(float x, float y, float w, float h) { setArc(x, y, w, h, start, extent, type); } /** * Returns the high-precision framing rectangle of the arc. The framing * rectangle contains only the part of this <code>Arc2D</code> that is * in between the starting and ending angles and contains the pie * wedge, if this <code>Arc2D</code> has a <code>PIE</code> closure type. * <p> * This method differs from the * {@link RectangularShape#getBounds() getBounds} in that the * <code>getBounds</code> method only returns the bounds of the * enclosing ellipse of this <code>Arc2D</code> without considering * the starting and ending angles of this <code>Arc2D</code>. * * @return the <CODE>RectBounds</CODE> that represents the arc's * framing rectangle. */ public RectBounds getBounds() { if (isEmpty()) { return new RectBounds(x, y, x + width, y + height); } double x1, y1, x2, y2; if (getArcType() == PIE) { x1 = y1 = x2 = y2 = 0.0; } else { x1 = y1 = 1.0; x2 = y2 = -1.0; } double angle = 0.0; for (int i = 0; i < 6; i++) { if (i < 4) { // 0-3 are the four quadrants angle += 90.0; if (!containsAngle((float)angle)) { continue; } } else if (i == 4) { // 4 is start angle angle = start; } else { // 5 is end angle angle += extent; } double rads = Math.toRadians(-angle); double xe = Math.cos(rads); double ye = Math.sin(rads); x1 = Math.min(x1, xe); y1 = Math.min(y1, ye); x2 = Math.max(x2, xe); y2 = Math.max(y2, ye); } double w = this.width; double h = this.height; x2 = this.x + (x2 * 0.5 + 0.5) * w; y2 = this.y + (y2 * 0.5 + 0.5) * h; x1 = this.x + (x1 * 0.5 + 0.5) * w; y1 = this.y + (y1 * 0.5 + 0.5) * h; return new RectBounds((float)x1, (float)y1, (float)x2, (float)y2); } /* * Normalizes the specified angle into the range -180 to 180. */ static float normalizeDegrees(double angle) { if (angle > 180.0) { if (angle <= (180.0 + 360.0)) { angle = angle - 360.0; } else { angle = Math.IEEEremainder(angle, 360.0); // IEEEremainder can return -180 here for some input values... if (angle == -180.0) { angle = 180.0; } } } else if (angle <= -180.0) { if (angle > (-180.0 - 360.0)) { angle = angle + 360.0; } else { angle = Math.IEEEremainder(angle, 360.0); // IEEEremainder can return -180 here for some input values... if (angle == -180.0) { angle = 180.0; } } } return (float)angle; } /** * Determines whether or not the specified angle is within the * angular extents of the arc. * * @param angle The angle to test. * * @return <CODE>true</CODE> if the arc contains the angle, * <CODE>false</CODE> if the arc doesn't contain the angle. */ public boolean containsAngle(float angle) { double angExt = extent; boolean backwards = (angExt < 0.0); if (backwards) { angExt = -angExt; } if (angExt >= 360.0) { return true; } angle = normalizeDegrees(angle) - normalizeDegrees(start); if (backwards) { angle = -angle; } if (angle < 0.0) { angle += 360.0; } return (angle >= 0.0) && (angle < angExt); } /** * Determines whether or not the specified point is inside the boundary * of the arc. * * @param x The X coordinate of the point to test. * @param y The Y coordinate of the point to test. * * @return <CODE>true</CODE> if the point lies within the bound of * the arc, <CODE>false</CODE> if the point lies outside of the * arc's bounds. */ public boolean contains(float x, float y) { // Normalize the coordinates compared to the ellipse // having a center at 0,0 and a radius of 0.5. double ellw = this.width; if (ellw <= 0.0) { return false; } double normx = (x - this.x) / ellw - 0.5; double ellh = this.height; if (ellh <= 0.0) { return false; } double normy = (y - this.y) / ellh - 0.5; double distSq = (normx * normx + normy * normy); if (distSq >= 0.25) { return false; } double angExt = Math.abs(extent); if (angExt >= 360.0) { return true; } boolean inarc = containsAngle((float)-Math.toDegrees(Math.atan2(normy, normx))); if (type == PIE) { return inarc; } // CHORD and OPEN behave the same way if (inarc) { if (angExt >= 180.0) { return true; } // point must be outside the "pie triangle" } else { if (angExt <= 180.0) { return false; } // point must be inside the "pie triangle" } // The point is inside the pie triangle iff it is on the same // side of the line connecting the ends of the arc as the center. double angle = Math.toRadians(-start); double x1 = Math.cos(angle); double y1 = Math.sin(angle); angle += Math.toRadians(-extent); double x2 = Math.cos(angle); double y2 = Math.sin(angle); boolean inside = (Line2D.relativeCCW((float)x1, (float)y1, (float)x2, (float)y2, (float)(2*normx), (float)(2*normy)) * Line2D.relativeCCW((float)x1, (float)y1, (float)x2, (float)y2, 0, 0) >= 0); return inarc ? !inside : inside; } /** * Determines whether or not the interior of the arc intersects * the interior of the specified rectangle. * * @param x The X coordinate of the rectangle's upper-left corner. * @param y The Y coordinate of the rectangle's upper-left corner. * @param w The width of the rectangle. * @param h The height of the rectangle. * * @return <CODE>true</CODE> if the arc intersects the rectangle, * <CODE>false</CODE> if the arc doesn't intersect the rectangle. */ public boolean intersects(float x, float y, float w, float h) { float aw = this.width; float ah = this.height; if ( w <= 0 || h <= 0 || aw <= 0 || ah <= 0 ) { return false; } float ext = extent; if (ext == 0) { return false; } float ax = this.x; float ay = this.y; float axw = ax + aw; float ayh = ay + ah; float xw = x + w; float yh = y + h; // check bbox if (x >= axw || y >= ayh || xw <= ax || yh <= ay) { return false; } // extract necessary data float axc = getCenterX(); float ayc = getCenterY(); // inlined getStartPoint double sangle = Math.toRadians(-start); float sx = (float) (this.x + (Math.cos(sangle) * 0.5 + 0.5) * width); float sy = (float) (this.y + (Math.sin(sangle) * 0.5 + 0.5) * height); // inlined getEndPoint double eangle = Math.toRadians(-start - extent); float ex = (float) (this.x + (Math.cos(eangle) * 0.5 + 0.5) * width); float ey = (float) (this.y + (Math.sin(eangle) * 0.5 + 0.5) * height); /* * Try to catch rectangles that intersect arc in areas * outside of rectagle with left top corner coordinates * (min(center x, start point x, end point x), * min(center y, start point y, end point y)) * and rigth bottom corner coordinates * (max(center x, start point x, end point x), * max(center y, start point y, end point y)). * So we'll check axis segments outside of rectangle above. */ if (ayc >= y && ayc <= yh) { // 0 and 180 if ((sx < xw && ex < xw && axc < xw && axw > x && containsAngle(0)) || (sx > x && ex > x && axc > x && ax < xw && containsAngle(180))) { return true; } } if (axc >= x && axc <= xw) { // 90 and 270 if ((sy > y && ey > y && ayc > y && ay < yh && containsAngle(90)) || (sy < yh && ey < yh && ayc < yh && ayh > y && containsAngle(270))) { return true; } } /* * For PIE we should check intersection with pie slices; * also we should do the same for arcs with extent is greater * than 180, because we should cover case of rectangle, which * situated between center of arc and chord, but does not * intersect the chord. */ if (type == PIE || Math.abs(ext) > 180) { // for PIE: try to find intersections with pie slices if (Shape.intersectsLine(x, y, w, h, axc, ayc, sx, sy) || Shape.intersectsLine(x, y, w, h, axc, ayc, ex, ey)) { return true; } } else { // for CHORD and OPEN: try to find intersections with chord if (Shape.intersectsLine(x, y, w, h, sx, sy, ex, ey)) { return true; } } // finally check the rectangle corners inside the arc if (contains(x, y) || contains(x + w, y) || contains(x, y + h) || contains(x + w, y + h)) { return true; } return false; } /** * Determines whether or not the interior of the arc entirely contains * the specified rectangle. * * @param x The X coordinate of the rectangle's upper-left corner. * @param y The Y coordinate of the rectangle's upper-left corner. * @param w The width of the rectangle. * @param h The height of the rectangle. * * @return <CODE>true</CODE> if the arc contains the rectangle, * <CODE>false</CODE> if the arc doesn't contain the rectangle. */ public boolean contains(float x, float y, float w, float h) { if (!(contains(x, y) && contains(x + w, y) && contains(x, y + h) && contains(x + w, y + h))) { return false; } // If the shape is convex then we have done all the testing // we need. Only PIE arcs can be concave and then only if // the angular extents are greater than 180 degrees. if (type != PIE || Math.abs(extent) <= 180.0) { return true; } // For a PIE shape we have an additional test for the case where // the angular extents are greater than 180 degrees and all four // rectangular corners are inside the shape but one of the // rectangle edges spans across the "missing wedge" of the arc. // We can test for this case by checking if the rectangle intersects // either of the pie angle segments. float halfW = getWidth() / 2f; float halfH = getHeight() / 2f; float xc = x + halfW; float yc = y + halfH; float angle = (float) Math.toRadians(-start); float xe = (float) (xc + halfW * Math.cos(angle)); float ye = (float) (yc + halfH * Math.sin(angle)); if (Shape.intersectsLine(x, y, w, h, xc, yc, xe, ye)) { return false; } angle += (float) Math.toRadians(-extent); xe = (float) (xc + halfW * Math.cos(angle)); ye = (float) (yc + halfH * Math.sin(angle)); return !Shape.intersectsLine(x, y, w, h, xc, yc, xe, ye); } /** * Returns an iteration object that defines the boundary of the * arc. * This iterator is multithread safe. * <code>Arc2D</code> guarantees that * modifications to the geometry of the arc * do not affect any iterations of that geometry that * are already in process. * * @param tx an optional <CODE>BaseTransform</CODE> to be applied * to the coordinates as they are returned in the iteration, or null * if the untransformed coordinates are desired. * * @return A <CODE>PathIterator</CODE> that defines the arc's boundary. */ public PathIterator getPathIterator(BaseTransform tx) { return new ArcIterator(this, tx); } @Override public Arc2D copy() { return new Arc2D(x, y, width, height, start, extent, type); } /** * Returns the hashcode for this <code>Arc2D</code>. * @return the hashcode for this <code>Arc2D</code>. */ @Override public int hashCode() { int bits = java.lang.Float.floatToIntBits(x); bits += java.lang.Float.floatToIntBits(y) * 37; bits += java.lang.Float.floatToIntBits(width) * 43; bits += java.lang.Float.floatToIntBits(height) * 47; bits += java.lang.Float.floatToIntBits(start) * 53; bits += java.lang.Float.floatToIntBits(extent) * 59; bits += getArcType() * 61; return bits; } /** * Determines whether or not the specified <code>Object</code> is * equal to this <code>Arc2D</code>. The specified * <code>Object</code> is equal to this <code>Arc2D</code> * if it is an instance of <code>Arc2D</code> and if its * location, size, arc extents and type are the same as this * <code>Arc2D</code>. * @param obj an <code>Object</code> to be compared with this * <code>Arc2D</code>. * @return <code>true</code> if <code>obj</code> is an instance * of <code>Arc2D</code> and has the same values; * <code>false</code> otherwise. */ @Override public boolean equals(Object obj) { if (obj == this) return true; if (obj instanceof Arc2D) { Arc2D a2d = (Arc2D) obj; return ((x == a2d.x) && (y == a2d.y) && (width == a2d.width) && (height == a2d.height) && (start == a2d.start) && (extent == a2d.extent) && (type == a2d.type)); } return false; } }
Ms-Dos/Windows
Unix
Write backup
jsp File Browser version 1.2 by
www.vonloesch.de